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Analysis on the Economic Value of Abalone

% My Business Problem:

The economic value of abalone is positively correlated with its age. Therefore, to be able to
distinguish the age of abalone is important for both abalone farmers and customers in order to
determine its price. However, the current technology to estimate the age is quite costly and
inefficient. Farmers usually cut the shells and count the rings through microscopes. My goal is to
take the physical measurements of abalone, which are easier to obtain, and find the best indicators
that could forecast the rings (age). If a statistical procedure proves to be reliable and accurate
enough, working hours could be saved.

% About the Dataset:
The dataset, Abalone, contains detail information about the abalone’s physical characteristics (sex,
length, diameter, height, whole weight, shucked weight, viscera weight, shell weight) and their
rings (age). It contains 9 columns, along with 4179 observations. The dataset is provided by the
University of California Irvine Machine Learning Reposition.

% Five Steps Toward Data Cleansing

Step 0: Glance through the dataset.
There is no missing data.

Step 1: Take a look at the correlation matrix.

v Correlations
Length Diameter Height Whole Weight Shucked Weight Viscera Weight Shell Weight Rings

Length 1.0000 0.9868 0.8276 0.9253 0.8979 0.9031 0.8978 0.5568
Diameter 0.9868 1.0000 0.8338 0.9254 0.8931 0.8998 0.9054 0.5747
Height 0.8276 0.8338 1.0000 0.8193 0.7750 0.7984 0.8174 0.5575
Whole Weight 0.9253 0.9254 0.8193 1.0000 0.9694 0.9664 0.9554 0.5404
Shucked Weight 0.8979 0.8931 0.7750 0.9694 1.0000 0.9320 0.8827 0.4209
Viscera Weight 0.9031 0.8998 0.7984 0.9664 0.9320 1.0000 0.9077 0.5039
Shell Weight 0.8978 0.9054 0.8174 0.9554 0.8827 0.9077 1.0000 0.6276
Rings 0.5568 0.5747 0.5575 0.5404 0.4209 0.5039 0.6276 1.0000

According to the correlation matrix, we could see that there are values higher than 0.5, which
indicate that there are strong correlations between them, and this might cause the issue of
collinearity. I would pay more attention to these variables in the later progress of data cleaning and
processing.

Step 2: Look at the distribution plot of each independent variables and check if they are
reasonable or not.

By observing the distribution plot of every independent variable, I found some outliers that should
be removed in order to make the (distribution) plot more normally distributed. There are three of



Jia-Wei (Jessie) Liang Writing Sample M.S. in Statistics

the independent variables that have significant results after removing the outliers, which are:

bh 1Y

“whole weight”, “shucked weight” and “shell weight”.
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v ~'Summary Statistics v ~'Summary Statistics v ~'Summary Statistics
Mean 0.8290102 Mean 0.3595078 Mean 0.2388922
Std Dev 0.4906362 Std Dev 0.2221216 Std Dev 0.1392424
Std Err Mean 0.0075906 Std Err Mean 0.0034364 Std Err Mean 0.0021542
Upper 95% Mean 0.8438918 Upper 95% Mean  0.366245 Upper 95% Mean 0.2431156
Lower 95% Mean 0.8141286 Lower 95% Mean 0.3527706 Lower 95% Mean 0.2346688
N 4178 N 4178 N 4178

The distribution plots of whole weight, shucked weight and shell weight show that there are
obvious outliers. I have two methods to fix this problem (remove the outliers).

Methods: Take the variable “whole weight” as an example:

1.The first method is to change all the observations that differ a lot from the mean to the number
that is closest to its value. Since observations more than 1.9 as well as observations less than 0.03
are far away from the mean, (considered to be outliers) I would make changes of the value of
whole weight, which are more than 1.9 to 1.9 and observations less than 0.03 to 0.03. This method
is useful when the problematic points are in large proportion of the original dataset. By conducting
this method, we would not lose too much information(data) from the dataset.

2. The second method is to delete all the problematic points since they could be viewed as
unreasonable or even wrong points. By deleting them, we could prevent them from ruin our
prediction model. However, we must be careful while conducting this method because once we
delete too much data, we would not have abundant information to build our model. Take the whole
weight example again, if we count the number of observations more than 1.9 and observation less
than 0.03, there are only 4178-4046=132 observations, which is only about 3% of the dataset
(small proportion). Therefore, in this example, we could use method 2.

By using the the above methods in the three independent variables, I could now obtain new
distribution plots, which are shown below:
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~ Distributions ' = Distributions ~ Distributions
v ~'Whole Weight v ~'Shucked Weight v ~'Shell Weight
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v ~ Summary Statistics v ~'Summary Statistics v ~'Summary Statistics

Mean 0.8021131 Mean 0.3446383 Mean 0.2303887
Std Dev 0.4449222 Std Dev 0.1965398 Std Dev 0.1240549
Std Err Mean 0.0069947 Std Err Mean 0.003091 Std Err Mean 0.0019525
Upper 95% Mean 0.8158266 Upper 95% Mean 0.3506983 Upper 95;% Mean 0.2342166
Lower 95% Mean 0.7883995 Lower 95% Mean 0.3385782 Lower 95% Mean 0.2265607
N 4046 N 4043 N 4037

From the “summary statistics”, we could see that the means are almost the same as the former
unfixed plots, which indicates that we do not lose too much information (data), especially the
necessary ones. In addition, we could see the standard deviation is much smaller than before, which
makes the data more reasonable.

Whole weight Delete observations that are more | Change of standard
than 1.9 and less than 0.03. deviation:

0.491 lower to 0.445
Number of observations:
4178-4046=132 (3.16% of the

whole data)
Shucked weight Delete observations that are more | Change of standard
than 0.85 and less than 0.01. deviation:

0.222 lower to 0.197
Number of observations:
4178-4043=135 (3.23% of the

whole data)
Shell weight Delete observations that are more | Change of standard
than 0.53 and less than 0.01. deviation:

0.139 lower to 0.124
Number of observations:
4178-4037=141 (3.37% of the
whole data)
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Step 3: Draw scatter plots for each independent variable along with the dependent variable.

This is a very important step because it would give us a general understanding of the correlation
between each dependent variable and independent variable. If there is no obvious correlation
between them (either positive or negative), we should think twice before putting the independent
variables into the model.

After I drew the scatter plots of each independent variable with dependent variable, I found out
that most of them have a clear positive correlation with the ring (age).

Below are some of the interesting plots that I would like to discuss:

1. ~/Oneway Analysis of Rings By Sex
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v Oneway Anova
v Summary of Fit

Rsquare 0.193107
Adj Rsquare 0.19272
Root Mean Square Error 2.896671
Mean of Response 9.934179
Observations (or Sum Wgts) 4178
v Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio Prob > F
Sex 2  8383.705 4191.85 499.5829
Error 4175 35031.194 8.39

C. Total 4177  43414.899

From the ANOVA table above, we could see that P-value is less than 0.05, which indicates that
sex might have effects on the rings (age). However, we could not find a linear correlation between
them. Therefore, I would rather remove this variable away or do some transformation to the
variable in order to make it more valid. Details will be discussed in step 4.
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2.

~ Bivariate Fit of Rings By Height
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Row 1418
_Height: 0.515/ Rings: 10

Row 2052
Height: 1.13/ Rings: 8

We could see that there are two outliers that would necessary affect the fit line. After removing
them, the scatter plot becomes as below, which the line is flatter.

r ~ Bivariate Fit of Rings By Height
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Since abalones are mostly round, the number of length' and diameter” are mostly the same. We
could see from the above plots that the scatter plots of length and diameter looks really similar. By
conducting another scatter plot between this two variables, we could see a strong correlation.

v ~ Bivariate Fit of Diameter By Length
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Therefore, in step 4, I will try to combine these two variables together to see if there could make
any differences. In addition, the same technique applies to “whole weight and shucked weight”,
“viscera weight and shell weight”.

Step 4: Create some new variables or make some transformations to solve the problem in step 3.

To create a new variable, we need to make sure that the new variable makes senses, and I would
like to create a formula that would solve problems in step 3.

DiameterxLengthXHeight

If the data belongs to Infants= -
Whole Weight

Formula=
Else DiameterxLengthxXHeight
! (shucked Weight+Viscera Weight)
v ~ Bivariate Fit of Rings By D*L*H/W ~ Bivariate Fit of Rings By D*L*H/SK+V
30 28
28 ¢ 2
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20 18 Row: 3891
18 % 16 D*L*H/SK+V: 0.0601459854 —
iS i% 14 Rings: 16

Click on red triangles for more optic
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! Length: Longest shell measurement (mm)
’ Diameter: Perpendicular to length (mm)
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Both of the plots show that the new variable has a positive linear correlation with rings (age). The
new variable contains information about sex, diameter, length and weights, which fixed all the

problem in step 3.

v Correlations v Correlations
D*L*H/W Rings D*L*H/SK+V
D*L*H/W 1.0000 0.1728 D*L*H/SK+V 1.0000
Rings 0.1728 1.0000 Rings 0.3473

Step 5: Take a deep look at the correlation between the independent variables.

Rings
0.3473
1.0000

I found that when I fit rings (age) with “shell weight”, “(D*L*H)/W”, “(D*L*H)/(SK+V)” into
the linear regression model, the coefficient of (D*L*H)/W will become negative. In addition, the

correlation matrix shows that there is correlation between these variables.

v Analysis of Variance - Correlations
Sum of
Source DF Squares Mean Square F Ratio *| k¥ x| *|
Model 3 21278.778 7092.93 1337.032 D L H SH/SK+V D L H/W
Error 4172 22132375 530 Prob>F D*L*H*SH/SK+V 1.0000 0.3215
C. Total 4175 43411.153 D*L*H/W 0.3215 1 0000
» Lack Of Fit ) )
v Parameter Estimates
Term Estimate Std Error tRatio Prob>lt|
Intercept 4619831 0.247102 18.70
D*L*H/W -167.6526 9.982464 -16.79

D*L*H/SK+V 139.70185 5.213507 26.80
Shell Weight 13.584424 0.259561 52.34

In order to decrease the effect of correlation, I would like to create a new variable by combining

the shell weight to one of the exist variables. Below is the new correlation matrix:

The issue of collinearity has been solved.

" Correlations
D*L*H/SK+V  D*L*H/W Shell Weight
D*L*H/SK+V 1.0000 0.8115 0.1633
D*L*H/W 0.8115  1.0000 0.1316
Shell Weight 0.1633  0.1316 1.0000
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% Qutline of My Previous Work on Data Cleansing:
I created some new variables and made some transformations in order to solve the problems
encountered while doing data cleansing. The new variables are “D/L” and “new”. D/L
(Diameter/Length) is created because most abalones are rounded, the numerical value of length’
and diameter® are almost alike.

While “new” is a column that is formed by the below formula:

DiameterxLengthxXHeight
Whole Weight

If the data belongs to Infants=
Formula=

_ DiameterXLengthxHeight
(shucked Weight+Viscera Weight)

Else,

I created this formula because from my previous work, I could see that “sex” (female/male/infants)
has effects on the rings (age). However, we could not find a linear correlation between them.
Despite from removing this variable away, I did some transformation on the variable in order to
make it more valid.

**Interpretation: “New” is the volume per each weight. From my perspective, infants are not yet
mature so I use the add-up total weight (Whole Weight). While adult (grown) abalones have more
obvious body structures, we could discuss each in detail. (Shucked Weight + Viscera Weight)

In addition, the number of whole weight is almost the total of adding shucked weight, viscera
weight, and shell weight together. Therefore, in this final project, I would choose to take “whole
weight”, “Height”, “D/L”, and “new” as my variables into my further analysis.

< My Analysis:

1. Ordinary Least Square

v Summary of Fit v Parameter Estimates
RSquare 0.426743 . .
RSquare Ad] ey Term Estimate Std Error t Ratio Pmb>|t! VIF
S e e B 2 449616 Intercept -1.569904 0.791165 -1.98 0.0473 .
Mean of Response 9.934626 Whole Weight 1.2766417 0.180719 7.06 5.4932716
Observations (or Sum Wgts) 4176 Height 19.87467 2.649588  7.50 7.279381
AlCc BIC DL 5.226551 1.067053 4.90 1.1729954
Jesilasol 1eseday] new 63.01238 3.361129 18.75 1.8267966
v Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio
Model 4 18525.418 4631.35 776.2431
Error 4171 24885.735 5.97 Prob>F

C.Total 4175 43411.153

3 Length: Longest shell measurement (mm)
* Diameter: Perpendicular to length (mm)
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From the regression result, we could see that all of the independent variables have a P-value less
than 0.05, which means all the predictors are significant. The Analysis of Variance table indicates
that the model is significant because the P-value of F is less than 0.05. In addition, we could see
from the Parameter Estimates table that all of the VIF value® of the variables are less than 10,
which means the dataset do not have the effect of multicollinearity®.

Then let’s take a look at the coefficient of each variables. Whole Weight, Height, D/L, and new
are positive, which are reasonable because in the reality, these factors do have a positive
relationship with rings (age). Adult (grown) abalones are considered to be bigger, larger and
heavier.

2. Lasso Regression

Measure Training
Number of rows 4178
Sum of Frequencies 4176
-LogLikelihood 9652.4439
BIC 19354.91
AlCc 19316.908

Generalized RSquare 0.4267433
v Parameter Estimates for Original Predictors
Wald Prob >

Term Estimate Std Error ChiSquare ChiSquare Lower 95% Upper 95%
Intercept -1.569904 1.4013789 1.2549756 0.2626  -4.316556 1.1767477
Whole Weight 1.2766417 0.2179219 34.319135 0.8495226 1.7037607
Height 19.87467 3.1346388 40.199888 13.730891 26.018449
D/L 5.226551 1.9460399 7.2131825 1.412383 9.040719
new 63.01238 4.2679337 217.9799 54.647384 71.377376
Scale 2.4411529 0.0443636 3027.8594 2.3542018 2.5281041

Lasso regression could be used as a variable selection model. Nevertheless, since I have cleaned
the data and finished the data selection process, the Lasso Regression would not be a relevant
method in this case because we could see from the table that Lasso Regression has high AIC” and
high BIC®, and the R square has not even change.

> VIF (Variance Inflation Factor) provides an index that measures how much the variance of an estimated regression
coefficient is increased because of collinearity.

% Multicollineraity exists when two or more of the predictors in a regression model are moderately or highly correlated.
When it exists, it would wreak havoc on the analysis and thereby limit the research conclusion.

7 AIC (Akaike Information Criterion) is a measure of the relative quality of statistical models for a given set of data.
Given a collection of models for the data, AIC estimates the quality of each model relative to each of the other models.
¥ BIC (Bayesian Information Criterion) is a criterion for model selection among a finite set of models. The model with
the lowest AIC and BIC is preferred. Wikipedia
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3. Ridge Regression

Writing Sample

Measure Training Validation

Number of rows 3758 418

Sum of Frequencies 3758 418

-LogLikelihood 8725.7624 927.71925

BIC 17500.915 1891.6514

AlCc 17463.547 1867.6429

Generalized RSauare 0.4264234 0.4280749

v Parameter Estimates for Original Predictors

Wald Prob >

Term Estimate Std Error ChiSquare ChiSquare Lower 95%
Intercept -1.817064 1.5980575 1.2928724 0.2555  -4.949199
Whole Weight 1.2223553 0.230479 28.127561 0.7706247
Height 21.156399 3.327662 40.420815 14.634301
D/L 5.4975541 2.2133177 6.1695217 0.0130* 1.159531
new 61.894118 4.5111247 188.24744 53.052476
Scale 2.4669388 0.0471693 2735.2521 2.3744886

Upper 95%
1.3150711
1.6740859
27.678496
9.8355771

70.73576
2.5593889

M.S. in Statistics

From the results, we could conclude that all the variables are are significant, and all of the
coefficients are reasonable. Comparing this method with the Ordinary Least Square method as
well as Lasso Regression, although the R square has not change very much, the value of AIC and
BIC are decreasing.

4. Decision Tree

Split Prune Number
RSquare RMSE N of Splits AlCc
0.403 2.4903249 4176 6 19487.5
|
¥ All Rows
Count 4176 LogWorth Difference
Mean  9.9346264 423.23686 3.52245
Std Dev  3.2245745
[
[ |
¥ Height<0.125 ¥ Height>=0.125
Count 1325 LogWorth Difference Count 2851 LogWorth Difference
Mean  7.5298113 122.83174 2.72221 Mean  11.052262 112.10474 2.21604
Std Dev  2.2068406 Std Dev 3.0052126
| |
[ | [ |
~ Whole Weight<0.1515 ~ Whole Weight>=0.1515 ~ new<0.0672801636 ~ new>=0.0672801636
Count 268 LogWorth Difference Count 1057 LogWorth Difference Count 1890 LogWorth Difference || Count 961
Mean 5.358209 30.83794 1.69175 Mean  8.0804163 57.245727 1.67208 Mean 10.305291 35.942378 1.29921 | Mean  12.521332
Std Dev  1.408391 Std Dev  2.0259128 Std Dev  2.4050907 Std Dev  3.4886442
,—l—\ ,—l—\ ,—l—\ » Candidates
¥ Whole Weight<0.075 | ¥ Whole Weight>=0.075 | |~ new<0.0465291262 | ¥ new>=0.0465291262 ¥ Height<0.165 ¥ Height>=0.165
Count 101 Count 167 Count 637 | Count 420 Count 1260 || Count 630
Mean  4.3663366 Mean  5.9580838 Mean  7.4160126 [ Mean  9.0880952 Mean  9.8722222 | Mean  11.171429

Std Dev 1.0170818
» Candidates

Std Dev 1.2675434
» Candidates

Std Dev 1.5155155
» Candidates

Std Dev 2.2735065
» Candidates

Std Dev 2.2578832
» Candidates

Std Dev 2.4577465
» Candidates

Comparing to other method, Decision Tree has the lowest R square and the highest AIC, which is
not as good as the former models. However, it has its own advantages since it provides a clear and
understandable data visualization format. We could easily find the main factor using Decision Tree

Method.

So far, I have built four different models, and each model has its own feature. Ordinary Least
Square (OLS) is the simplest method in linear regression, we could easily run this model in any

10
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software. Ridge and Lasso Regression are methods based on OLS, which could be used as variable
selection methods. In addition, Ridge and Lasso Regression could sometimes have a better result
than OLS method. As for Decision Tree, it is another kind of model. It provides clear split and it
let people to better understand the relationship between dependent variable and independent
variables.

Based on the above results, Ridge Regression has the lowest AIC and BIC. Therefore, I would
choose this as my prediction model.

% Conclusion:
The formula of the regression model will be:

Rings (Age)=-1.817 + 1.222*Whole Weight + 21.156*Height + 5.498*D/L + 61.894*new

As we could see in this model, the largest coefficient belongs to “new”. “New” is the abalone’s
volume (size)’ per weight. Surprisingly, I found out that “Whole Weight” is not that important. In
addition, “Height” is also a crucial factor.

Suggestions for people raising and selling abalones:

* Previously, as of now, in order to know the abalone’s age, farmers have to take a sample
of shell, straining it, and counting the number of rings under the microscope. It is a very
boring and time consuming task. With my new proposal, there is no need to measure the
numbers of layers of shell (rings) on the abalone’s shell. We could tell the abalone’s age
from their physical measurement.

* The numerical value of their size divided by their weight is highly correlated to their age.
(Use “whole weight” as if it is an infant abalone, and use “shucked weight + viscera weight”
for adult abalones, no matter they are male or female)

*  When you are in a hurry and do not have the time to do all the measurements, the abalone’s
height is a good way to predict their age too! The higher the abalones are, the older they

would be.

Suggestion for people buying abalones:

* Abalones are an excellent source of iron and pantothenic acid. Because of them containing
highly nutrients, abalones are very expensive. People often have the misunderstanding that
the heavier the products, the better they are. However, in the abalone case it is not that true.
The “Whole Weight” did not play an important role as well as other factors.

* Next time, when choosing abalones, do not rely entirely on the weight shown on the scale
too much. The abalone’s height is a better predictor. Higher abalones mean that they are
more mature, which contains more nutrition, and it is worth buying them with higher prices.

? Volume (size)=Length*Diameter*Height

11
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Appendix: Logistic Regression

I would like to perform another regression model that would tell the possibility that whether the
abalone is old or young. Since logistic regression is used when the dependent variable in question
is categorical, I divide the “Rings” dataset into two categories: 0 and 1 and I put them into a new
column: Age

0 is for rings larger than 10, which means they are adult (grown) abalones; while 1 is for rings less
than 10, which means they are not mature enough.

v Parameter Estimates RSquare (U) 0.2385
Term Estimate Std Error ChiSquare Prob>ChiSq B|C 41 4658
Intercept -8.8136295 0.8546136 106.36
Whole Weight 1.44544381 0.1869367 59.79
Height 5.48939901 2.8778077 3.64 0.0565
D/L 3.83960471 1.1044201 12.09
new 51.1853008 3.6100812 201.03

For log odds of 0/1

However, from the table above, an unexpected result showed up. The “Height” variable has the P-
value higher than 0.05.

After I remove the variable “Height” and run the regression again:

v Parameter Estimates RSquare (U) 0.2378
Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept -8.6202269 0.848001 103.33 BIC 41 41 89
Whole Weight 1.75972736 0.0907201 376.26
D/L 3.969913 1.1030911 12.95
new 54.9032377 3.0551307 322.95

For log odds of 0/1

Now all the variables are significant, and the coefficients are still reasonable. While the R square
is almost the same as the previous one, the BIC value is smaller, which seemed to be a better
model.

Conclusion:
The formula of the logistic regression model will be:

1
1+e~ 2

Probability of being an adult (grown) abalone=

while, Z= -8.62 + 1.76 Whole Weight + 3.97 D/L + 55 new

12



